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ABSTRACT: Whole genome sequencing (WGS) has become a central tool in evolutionary biology, conservation genetics, and 

agricultural genomics, enabling high-resolution analyses of genetic variation across diverse taxa. However, the application of WGS 

to non-model species presents substantial bioinformatic challenges, including incomplete or biased reference genomes, high levels 

of genetic diversity, variable sequencing depth, and limited computational resources. These constraints complicate pipeline design, 

variant discovery, and biological interpretation, particularly in agriculturally relevant systems where genomic outputs must be 

translated into practical outcomes. 

This review critically examines current bioinformatic pipelines used for whole genome sequencing analyses in non-model species, 

with a focus on methodological trade-offs, sources of bias, and context-dependent optimization strategies. We synthesize recent 

advances in read processing, alignment and assembly approaches, variant calling frameworks, and functional annotation tools, and 

compare commonly used pipelines with respect to their suitability for non-model and agricultural applications. In addition, we 

highlight persistent limitations in benchmarking, reproducibility, and data integration, and discuss emerging trends such as long-

read sequencing, pangenome frameworks, and machine learning-assisted pipeline optimization. 

By integrating conceptual frameworks, comparative evaluations, and applied examples from crop, livestock, and pathogen 

genomics, this review provides practical guidance for designing robust and reproducible WGS bioinformatic workflows. The 

insights presented here aim to support informed methodological decision-making and to facilitate the effective translation of 

genomic data into agricultural improvement, conservation management, and biological discovery in non-model systems. 

KEYWORDS: Whole genome sequencing; Non-model species; Pipeline optimization; Variant calling tools; Reference genome 

bias; Population genomics. 

INTRODUCTION 

The rapid evolution of high-throughput sequencing (HTS) 

technologies has democratized access to whole genome 

sequencing, moving it from a monumental undertaking for a 

few model organisms to a feasible tool for exploring the 

genetic fabric of virtually any species on Earth. This shift 

has been particularly transformative for the study of non-

model species,organisms that lack the extensive genomic 

resources, such as high-quality reference genomes, detailed 

annotations, and established laboratory protocols, that are 

available for models like humans, mice, or fruit flies. Whole 

genome resequencing (WGR) of populations of non-model 

species offers unprecedented power to address fundamental 

questions in ecology, evolution, and conservation biology, 

from identifying genetic adaptations to climate change and 

deciphering demographic history to assessing the genomic 

basis of inbreeding and disease susceptibility in endangered 

populations (Hohenlohe et al., 2021; Leroy et al., 2021). 

However, the immense potential of WGR in non-model 

species is coupled with significant bioinformatic challenges. 

The analytical journey from raw sequencing reads to 

biological insight is fraught with complexities that are often 

exacerbated in non-model systems. Unlike work in model 

organisms, where standardized, validated pipelines exist, 

researchers working on non-model species must navigate a 
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labyrinth of decisions and potential pitfalls without a 

universal roadmap. The primary hurdle is the frequent 

absence of a high-quality, chromosome-level reference 

genome for the species of interest. While reference-

free genome assembly is increasingly common, many 

studies rely on a draft genome or a reference from a closely 

related species. This can introduce substantial biases during 

read mapping, including increased rates of mismapping, 

lower mapping efficiency, and reference allele bias, where 

alleles present in the reference genome are artificially 

favored during variant calling (Günther & Nettelblad, 2019). 

These issues can systematically skew downstream 

population genetic analyses, such as estimates of nucleotide 

diversity, population structure, and selection signatures. The 

core of WGR analysis is the bioinformatic pipeline,a multi-

step computational workflow that transforms raw 

sequencing data into a set of high-confidence genetic 

variants (e.g., single nucleotide polymorphisms - SNPs, 

indels). A standard pipeline typically involves quality 

control and adapter trimming, read alignment to a reference 

genome, processing of alignment files (e.g., duplicate 

marking, base quality recalibration), variant calling, and 

stringent variant filtering. Each step requires careful 

consideration of the software, parameters, and thresholds 

used, decisions that are highly sensitive to the specificities 

of the non-model study system (Shafer et al., 2017). For 

instance, the choice of aligner (e.g., BWA-MEM, Bowtie2) 

and its parameters can greatly affect mapping outcomes, 

particularly when dealing with divergent genomes. Similarly, 

variant callers like GATK’s HaplotypeCaller or Samtools’ 

mpileup, while powerful, are primarily optimized for human 

data and may require extensive parameter tuning and 

validation for non-model applications to balance the trade-

off between sensitivity (finding all true variants) and 

specificity (avoiding false positives) (Poplin et al., 2018). 

Perhaps the most critical and often subjective stage is variant 

filtering. This process aims to remove spurious variant calls 

arising from sequencing errors, mapping artifacts, or 

misalignment. Researchers must filter based on a 

combination of quality metrics, such as read depth (DP), 

genotype quality (GQ), mapping quality (MQ), and strand 

bias. However, establishing appropriate thresholds is non-

trivial. Overly stringent filtering may discard true, often rare 

or novel, variants, while overly lenient filtering will inundate 

the dataset with false positives that can invalidate subsequent 

analyses. In non-model species, the lack of known "true" 

variant sets or high-quality validation data makes it 

exceptionally difficult to benchmark filtering strategies and 

assess the true error rate of the final dataset (O'Neill et al., 

2022). This has led to a concerning lack of standardization 

across studies, hindering reproducibility and meta-analyses. 

Beyond these core steps, the analysis of WGR data in non-

model species often ventures into more complex territory. 

Many research questions require the identification 

of structural variants (SVs),larger genomic alterations like 

inversions, duplications, and translocations,which are even 

more challenging to accurately detect than SNPs, especially 

without a high-quality reference. Furthermore, the field is 

increasingly moving towards a population 

genomics approach, leveraging the full spectrum of genetic 

variation to infer demography, detect selection, and 

understand adaptive processes. This requires sophisticated 

methods for estimating allele frequency spectra, identifying 

runs of homozygosity (ROH) to measure inbreeding, and 

performing genome-wide association studies (GWAS) or 

genome-scans for selection (e.g., Fst, XP-CLR). Each of 

these analyses has its own assumptions and sensitivities to 

data quality and missingness, further compounding the 

analytical challenge. In applied and agricultural contexts, 

whole genome sequencing of non-model species plays an 

important role in crop improvement, livestock breeding, 

pathogen surveillance, and the conservation of agro-

biodiversity. Many agriculturally important species lack 

high-quality reference genomes, making carefully optimized 

bioinformatic pipelines essential for translating genomic 

data into breeding, management, and disease-resistance 

strategies.  This review article aims to provide a 

comprehensive overview and critical evaluation of 

bioinformatic pipelines for whole genome resequencing in 

non-model species. We will deconstruct the standard 

workflow, from raw data to variant calls, highlighting the 

key challenges and decision points at each stage. We will 

discuss best practices for quality control, read mapping, 

variant calling, and filtering in the context of divergent 

genomes and imperfect references. Furthermore, we will 

explore advanced applications, including structural variant 

detection and population genomic inference, and address the 

crucial issues of reproducibility and data management. By 

synthesizing insights from previous studies and emerging 

methodologies, this review seeks to serve as a practical guide 

for researchers navigating the complex yet powerful 

landscape of whole genome resequencing in the non-model 

world. 

CHALLENGES IN WHOLE GENOME 

SEQUENCING FOR NON-MODEL SPECIES 

To fully appreciate the complexities of bioinformatic 

pipeline design, it is first necessary to understand the 

fundamental challenges posed by non-model genomic 

systems. The application of whole genome sequencing 

(WGS) to non-model species has unlocked transformative 

potential in fields like evolutionary biology, conservation 

genetics, and ecology. However, the path to generating 

robust and biologically meaningful genomic insights is 

fraught with significant challenges that distinguish it from 

work in well-established model organisms. These challenges 

do not represent isolated technical issues but interact 

synergistically, often amplifying biases if pipeline design 
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and parameter selection are not carefully aligned with the 

biological characteristics of the study system. For example, 

in livestock genomics and crop wild relatives, reference bias 

can obscure adaptive loci associated with disease resistance 

or environmental tolerance, directly impacting breeding and 

selection decisions. These hurdles, which arise from the 

inherent biological characteristics of many non-model 

species and the resource-limited contexts in which they are 

often studied, can introduce substantial biases and errors if 

not carefully managed. This review synthesizes the primary 

challenges, focusing on the lack of reference genomes, high 

genetic diversity, issues of data quality and quantity, and 

daunting computational limitations. An overview of a 

typical whole genome sequencing bioinformatic workflow 

for non-model species is shown in Figure 1. 

Lack of Reference Genomes 

The cornerstone of most WGS analyses is a high-quality, 

chromosome-level reference genome. For non-model 

species, such a resource is frequently absent, presenting a 

fundamental and cascading set of problems. Many studies 

resort to reference-free genome assembly, a process that is 

itself highly challenging. High heterozygosity, repetitive 

elements, and polyploidy,common features in non-model 

species,can fragment assemblies and generate chimeric 

scaffolds. While long-read sequencing technologies (e.g., 

PacBio, Oxford Nanopore) have dramatically improved 

contiguity, achieving chromosome-level resolution often 

requires additional costly techniques like Hi-C or optical 

mapping, which are not always feasible (Hotaling et al., 

2021). Consequently, many non-model species research 

relies on fragmented, incomplete draft genomes. These 

partial references create mapping biases during 

resequencing, as reads from unrepresented or misassembled 

regions may be discarded or mismapped, leading to a 

systematic loss of genetic variation and skewing 

downstream analyses (Günther & Nettelblad, 2019). A 

common alternative is the use of a reference genome from a 

closely related species. While practical, this approach 

introduces the problem of reference bias. During read 

alignment, sequences that diverge from the reference are less 

likely to map correctly or at all. This results in an artificial 

inflation of genetic similarity to the reference species and a 

severe under-calling of variants, particularly in the most 

divergent,and often most biologically interesting,genomic 

regions (Shafer et al., 2017). This bias directly impacts 

population genetic statistics, leading to underestimates of 

nucleotide diversity and distorted inferences of demographic 

history and selection, as the analysis becomes inherently 

biased towards conserved genomic areas. 

High Genetic Diversity 

Many non-model species, particularly those that are 

outcrossing or have large population sizes, exhibit levels of 

genetic diversity that far exceed those of classic model 

organisms. While a source of valuable information, this high 

diversity complicates bioinformatic procedures. 

Elevated heterozygosity poses a major challenge 

for reference-free assembly, often resulting in highly 

fragmented assemblies as haplotypes are assembled 

separately rather than merged into a single consensus 

sequence. For resequencing studies, high heterozygosity 

Figure 1: Conceptual workflow of whole genome sequencing bioinformatic pipelines for non-model species. 
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increases the complexity of variant calling, as algorithms 

must distinguish true heterozygous sites from a background 

of sequencing errors and paralogous alignments. 

Furthermore, structural variations (SVs),including 

inversions, duplications, and large insertions/deletions,are 

abundant and poorly characterized in non-model species. 

Standard short-read aligners struggle to map reads 

accurately across breakpoints of SVs, leading to false 

positive variant calls and the misinterpretation of 

hemizygous regions as homozygous deletions. The detection 

of SVs requires specialized tools and often long-read 

sequencing data, adding another layer of analytical 

complexity and cost (Mahmoud et al., 2019). This high level 

of diversity and structural variation makes the alignment 

process less efficient and variant calling less accurate, 

ultimately obscuring the true patterns of genomic variation. 

Data Quality and Quantity 

Financial constraints often force researchers working on 

non-model species to make pragmatic decisions that impact 

data quality. Low-coverage sequencing (e.g., <10x coverage) 

is a common strategy to maximize the number of individuals 

sequenced within a budget. However, low coverage 

drastically increases genotype uncertainty. Distinguishing 

true heterozygous sites from sequencing errors becomes 

statistically challenging, often necessitating sophisticated 

genotype likelihood methods rather than direct genotype 

calling (Lou et al., 2021). While these methods enable 

valuable analyses like population structure inference, they 

are less powerful for detecting rare variants or performing 

association mapping, where accurate individual-level 

genotypes are critical. Moreover, WGS data is not free from 

technical artifacts. Sequencing errors are inherent to all 

platforms, and their profile differs between technologies 

(e.g., homopolymer errors in Nanopore, GC bias in Illumina). 

In non-model species, the absence of known true variants 

makes it difficult to calibrate base quality scores and 

empirically determine optimal filtering thresholds. PCR 

duplicates, caused during library preparation, can inflate 

coverage uniformity and must be identified and removed, 

but this process can mistakenly flag reads from paralogous 

regions as duplicates in the absence of a perfect reference, 

leading to the loss of genuine data. Managing these biases 

and errors without standardized resources requires careful, 

often custom, bioinformatic processing. 

Computational Limitations 

Perhaps the most pervasive barrier is the 

immense computational resource demand of WGS analysis. 

The volume of data generated is staggering; a single whole 

genome at 30x coverage can produce hundreds of gigabytes 

of raw data. Processing this data,through quality control, 

alignment, duplicate marking, and variant calling,requires 

substantial CPU power, large amounts of RAM, and vast 

storage space. For example, the alignment of hundreds of 

samples to a reference genome and subsequent joint variant 

calling are highly memory-intensive processes that typically 

require high-performance computing (HPC) clusters 

(Formenti et al., 2022). The accessibility of HPC 

resources is a major hurdle for many research communities 

focused on non-model species. While large genomic 

consortia have ready access to such infrastructure, individual 

research groups, particularly those in smaller institutions or 

developing countries, may not. This creates a significant 

disparity in the ability to conduct state-of-the-art genomic 

research. The computational burden also limits the 

exploration of different analytical parameters and the use of 

more accurate but computationally expensive software tools, 

potentially forcing researchers to adopt suboptimal methods. 

Furthermore, the expertise required to manage these 

computational workflows and large datasets presents a steep 

learning curve, creating a bioinformatic bottleneck that can 

slow the pace of discovery and innovation in non-model 

species genomics. Major bioinformatic challenges 

encountered in non-model species and commonly applied 

mitigation strategies are summarized in Figure 2. 

 

Figure 2: Key bioinformatic challenges and mitigation 

strategies in non-model genomics. 

COMPONENTS OF BIOINFORMATIC PIPELINES 

FOR WHOLE GENOME SEQUENCING 

The transformation of raw sequencing reads into 

biologically interpretable data requires a multi-stage 

bioinformatic pipeline. Each stage presents unique 

challenges and requires careful consideration when applied 

to non-model species. A robust pipeline is not merely a chain 

of tools but an integrated workflow where the output of each 

step critically influences the next. This section deconstructs 

the standard pipeline, examining the key components,from 

initial data preprocessing to final validation,and highlights 

the specific considerations and best practices for their 

application in non-model genomic studies. 
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Data Preprocessing 

The initial and crucial step in any WGS analysis is data 

preprocessing, which aims to ensure that only high-quality 

data proceeds downstream, thereby reducing artifacts and 

improving the accuracy of all subsequent analyses. The 

process begins with quality control using tools like FastQC, 

which provides a visual report on read quality scores, 

nucleotide composition, adapter contamination, and the 

presence of over-represented sequences. For non-model 

species, particular attention must be paid to GC content, as 

significant deviations from the expected distribution can 

indicate contamination or specific technical biases. 

Following quality assessment, adapter trimming and 

filtering of low-quality reads and bases are performed using 

tools such as Trimmomatic or Cutadapt. This step is vital for 

removing sequencing adapters, which, if left in place, can 

align to the reference genome and create false positive 

variant calls, particularly indels. Furthermore, trimming 

low-quality bases from the ends of reads increases the 

accuracy of subsequent alignment. The stringency of 

filtering must be balanced; overly aggressive trimming can 

shorten reads to the point where they become unmappable, 

especially to a divergent reference genome. The parameters 

for these tools (e.g., sliding window quality thresholds, 

minimum read length) often require optimization based on 

the initial quality reports and the specific sequencing 

technology used (Bolger et al., 2014). 

Read Alignment 

The core step of mapping preprocessed reads to a reference 

genome is profoundly influenced by the nature of the non-

model species' genome. The choice of aligner is critical. 

Burrows-Wheeler Aligner (BWA-MEM) and Bowtie2 are 

among the most widely used aligners due to their accuracy, 

efficiency, and sensitivity. BWA-MEM is generally 

preferred for its better performance with longer reads and 

indels, which are common when dealing with divergent 

genomes (Li, 2013). Handling an incomplete or divergent 

reference genome is the primary challenge. When using a 

reference from a closely related species, it is often necessary 

to adjust alignment parameters to allow for a higher 

mismatch rate. However, this increases the risk of reads from 

paralogous regions mapping incorrectly. A key strategy is to 

perform soft clipping, which allows the ends of reads that do 

not map to be excluded from the alignment without 

discarding the entire read, preserving information for variant 

calling. The resulting Sequence Alignment/Map (SAM) or 

its compressed counterpart (BAM) file must then be 

processed by marking PCR duplicates and, if possible, 

performing local realignment around indels. However, tools 

for these steps, like those in the Genome Analysis Toolkit 

(GATK) suite, are optimized for human data and may 

require significant parameter tuning for non-model 

organisms to avoid removing true biological variation 

(Poplin et al., 2018). 

Variant Calling 

Notably, no single pipeline performs optimally across all 

non-model systems, underscoring the necessity of context-

dependent pipeline selection rather than reliance on default 

or human-centric workflows. Variant calling identifies 

genomic positions that differ from the reference genome, 

primarily focusing on single nucleotide polymorphisms 

(SNPs) and small insertions/deletions (indels). This step is 

highly sensitive to alignment quality and read depth. Two 

main classes of variant callers are employed: those that 

operate on a single sample (e.g., BCFtools mpileup) and 

those designed for population-level variant detection by 

jointly calling variants across multiple samples (e.g., GATK 

HaplotypeCaller, FreeBayes). Joint calling is generally 

preferred as it improves sensitivity for detecting low-

frequency variants by leveraging information across the 

entire cohort. The choice of tool involves trade-offs. 

GATK's HaplotypeCaller uses a powerful local assembly 

step that is excellent for calling indels and variants in 

complex regions but is computationally intensive and may 

be over-parameterized for non-human data. FreeBayes is a 

popular haplotype-based alternative that is often used in non-

model species research due to its simpler model and fewer 

assumptions about ploidy and population structure (Garrison 

& Marth, 2012). For all callers, the resulting raw variant call 

format (VCF) file contains many false positives and must 

undergo rigorous filtering based on depth, quality scores, 

mapping quality, and strand bias. Establishing these 

thresholds without known truth sets is a major challenge and 

often relies on heuristic filters and visual inspection of the 

data. A comparative overview of commonly used variant 

calling pipelines and their suitability for non-model species 

is provided in Table 1.  

Annotation and Functional Analysis 

Determining the functional consequence of identified 

variants is a primary goal for many studies but is 

exceptionally difficult for non-model species. The challenge 

in gene annotation stems from the lack of well-annotated 

reference genomes. Without comprehensive databases of 

known genes and regulatory elements, predicting whether a 

variant is synonymous, non-synonymous, or in a regulatory 

region is fraught with uncertainty. Researchers must 

therefore rely on a combination of tools. Basic annotation 

involves mapping variant positions to any available gene 

predictions (GFF/GTF files) for the reference. For functional 

inference, tools like BLAST are used to find homologous 

sequences in model organism databases (e.g., UniProt, 



                             Ayub et al., 2026 

Page 6 of 16 

https://journalscinex.com/index.php/SJAS/index               

RefSeq). InterProScan can then be used to predict protein 

domains and functional sites, while databases 

like eggNOG provide functional orthology assignments 

across a wide range of species (Huerta-Cepas et al., 2019). 

This comparative approach is powerful but imperfect; it risks 

misannotating genes that are novel to the species or have 

diverged in function, and it provides little insight into non-

coding regulatory variants. 

 

Quality Control and Validation 

Throughout the pipeline, rigorous quality control is 

essential. Metrics for assessing performance include 

alignment rates (the proportion of reads that map to the 

reference), mean depth of coverage, the distribution of 

depths, and the transition/transversion (Ti/Tv) ratio for SNP 

datasets,a ratio that typically falls within a predictable range 

for true variants and deviates for error-prone data. A low 

alignment rate or uneven coverage can indicate problems 

with the reference genome or library preparation. The most 

significant challenge is the validation of variants without a 

gold-standard dataset. Where resources allow, a subset of 

variants can be validated using an independent technology 

like Sanger sequencing. A powerful computational strategy 

is to use simulated datasets, where reads are generated in 

silico from a known genome sequence containing predefined 

variants. By running these simulated reads through the entire 

Table 1: Comparative overview of major variant calling pipelines and their suitability for non-model species. 

Pipeline Variant types 

supported 

Key strengths Key limitations Computational 

demand 

Recommended 

use cases in 

non-model / 

agricultural 

species 

GATK SNPs, small 

indels 

High accuracy; 

extensive 

validation; 

strong 

community 

support 

Optimized for 

human 

genomics; 

sensitive to 

reference bias 

High High-quality 

reference 

genomes; 

resequencing in 

well-annotated 

crops or 

livestock 

FreeBayes SNPs, indels Flexible ploidy 

support; suitable 

for diverse 

genomes 

Parameter-

sensitive; 

limited 

structural 

variant detection 

Moderate Non-model 

species with 

variable ploidy 

and moderate 

coverage 

SAMtools / 

BCFtools 

SNPs, indels Fast; 

lightweight; 

widely used 

Lower 

sensitivity at 

low coverage; 

limited 

advanced 

filtering 

Low Exploratory 

analyses; 

preliminary 

variant 

discovery 

ANGSD Genotype 

likelihoods 

Robust to low 

coverage; avoids 

hard genotype 

calls 

Does not output 

genotypes 

directly 

Low–Moderate Population 

genomics; low-

coverage 

agricultural 

datasets 

dDocent SNPs Integrated 

pipeline; 

optimized for 

high 

heterozygosity 

Complex setup; 

limited 

scalability 

Moderate Marine, wild 

relatives, and 

heterogeneous 

agricultural 

populations 
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pipeline, researchers can benchmark its sensitivity and false 

discovery rate and optimize parameters accordingly 

(Escalona et al., 2016). This process, though 

computationally expensive, is invaluable for developing a 

reliable and validated bioinformatic workflow tailored to the 

specific peculiarities of a non-model species study system. 

 

 

Table 2: Comparative strengths, limitations, and recommended applications of major whole genome sequencing pipelines used 

in non-model and agricultural species. 

Pipeline / 

framework 

Typical inputs Strengths Limitations Computational 

demand 

Recommended 

applications (non-

model / 

agricultural) 

GATK Best 

Practices 

BAM/CRAM 

aligned reads; 

reference genome; 

known sites optional 

High accuracy; 

extensive 

documentation; 

broad 

community 

support 

Human-centric 

defaults; 

requires high-

quality 

reference; 

reference bias 

risk 

High Well-annotated 

crops/livestock; 

high-coverage 

resequencing; 

clinical-like 

diagnostics 

ANGSD 

(genotype 

likelihood) 

Aligned reads 

(BAM); reference 

recommended but 

flexible; low 

coverage 

Robust to low 

coverage; 

avoids hard 

genotype calls; 

good for 

population 

inference 

Requires 

statistical 

expertise; 

limited direct 

genotype output 

Low–Moderate Low-coverage 

population 

genomics; wild 

relatives; breeding 

populations under 

cost constraints 

dDocent Raw reads; reference 

optional; designed 

for high 

heterozygosity 

Integrated 

workflow; 

optimized for 

diverse/non-

model genomes 

More complex 

configuration; 

limited 

scalability for 

very large 

datasets 

Moderate Highly 

heterozygous 

species; mixed 

breeding 

populations; non-

model 

wildlife/agricultural 

systems 

Snakemake / 

Nextflow-based 

custom 

workflows 

Flexible (raw reads 

to 

variants/annotations); 

modular tool 

selection 

Highly 

reproducible; 

scalable; 

portable across 

HPC/cloud; 

parameter 

transparency 

Quality depends 

on design; 

requires pipeline 

development 

skills 

Moderate–High 

(depends on 

tools) 

Large multi-sample 

projects; 

institutional 

breeding programs; 

standardized 

reanalysis pipelines 

Galaxy (web-

based platform) 

Raw reads or aligned 

reads; GUI-based 

analysis 

Accessible for 

non-specialists; 

good for 

teaching and 

smaller projects 

Limited 

scalability for 

very large WGS; 

depends on 

server resources 

Low–Moderate Small to medium 

datasets; capacity 

building in 

agricultural 

genomics labs 

Reference-free 

assembly + 

variant 

discovery 

(hybrid) 

Short + long reads; 

assembly graphs; 

optional reference 

anchoring 

Reduces 

reference bias; 

captures SVs; 

improves 

genome 

representation 

Computationally 

intensive; 

requires careful 

QC and 

validation 

High Species lacking 

references; crop 

wild relatives; 

structural variation-

driven traits 
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EXISTING BIOINFORMATIC PIPELINES 

Comparative Evaluation of Major Bioinformatic 

Pipelines 

General-purpose pipelines such as GATK provide high 

accuracy and extensive validation but are computationally 

intensive and optimized primarily for human genomics. In 

contrast, pipelines such as ANGSD and dDocent prioritize 

robustness to low sequencing coverage and high 

heterozygosity, making them more suitable for non-model 

and agricultural species where reference quality and 

sequencing depth are often limited. The complexity of 

analyzing whole genome sequencing (WGS) data has led to 

the development of standardized bioinformatic pipelines. 

These frameworks aim to streamline the analytical process, 

reduce human error, and enhance reproducibility. For 

researchers working with non-model species, the choice of 

pipeline is critical and must be guided by an understanding 

of their underlying assumptions, strengths, and limitations. 

Existing solutions range from highly polished, general-

purpose frameworks designed for human genetics to 

specialized tools built specifically to handle the challenges 

of diverse, poorly referenced genomes. Furthermore, the rise 

of workflow management systems has empowered 

researchers to construct robust, scalable, and reproducible 

analytical pathways, even for the most complex non-model 

projects. A comparative summary of major WGS pipeline 

frameworks and their suitability for non-model and 

agricultural species is presented in Table 2. 

General-Purpose Pipelines 

The gold standard in human genomics is the GATK Best 

Practices pipeline, developed by the Broad Institute. This 

comprehensive framework provides a meticulously 

validated series of steps for data preprocessing, alignment, 

base quality score recalibration (BQSR), and variant calling 

using the HaplotypeCaller in a joint-genotyping approach. 

Its rigorous methodology minimizes artifacts and produces 

exceptionally high-quality variant calls for human data. 

Similarly, the suite of tools within SAMtools and BCFtools, 

pioneered by Heng Li, offers a more modular but widely 

adopted set of utilities for processing alignments (samtools) 

and calling variants (bcftools mpileup). However, the 

direct applicability of these general-purpose pipelines to 

non-model species is limited. The GATK Best Practices 

workflow makes several key assumptions that are often 

violated in non-model systems. The BQSR step, for instance, 

requires a known database of polymorphic sites to 

recalibrate base quality scores,a resource that is absent for 

non-model organisms. Furthermore, the HaplotypeCaller's 

statistical models are finely tuned for human levels of 

heterozygosity and specific error profiles. When applied to a 

highly diverse non-model species or a divergent reference 

genome, these models can perform suboptimally, leading to 

a high false positive rate or an under-calling of true variants 

(Poplin et al., 2018). While these tools can often be used as 

components within a larger workflow, their "best practices" 

require significant modification and parameter tuning to be 

effective outside of the human context. 

Specialized Pipelines for Non-Model Species 

Recognizing the limitations of general-purpose tools, the 

community has developed several specialized pipelines 

explicitly designed for the challenges of non-model species. 

These tools often forego the need for a high-quality 

reference genome or are built to handle high levels of 

diversity and missing data. A seminal example in the realm 

of reduced-representation sequencing (RAD-seq) that has 

influenced WGS approaches is Stacks. While designed for 

restriction-site-associated DNA sequencing, its philosophy 

of reference-free locus discovery and genotyping without 

strict dependence on a reference genome has been 

foundational. For WGS, pipelines like dDocent have gained 

significant traction. dDocent is a flexible, open-source 

workflow that guides users from raw WGS reads to validated 

SNPs. Its strength lies in its adaptability; it can 

perform reference-free reference assembly from the data 

itself, align reads to this reference-free assembly or an 

existing reference, and call variants using a combination of 

FreeBayes and other tools (Puritz et al., 2014). It includes 

built-in filters for quality and balance of allele depths, which 

are crucial for managing high heterozygosity. For low-

coverage WGS data or projects where genotype likelihoods 

are preferable to called genotypes due to 

uncertainty, ANGSD (Analysis of Next Generation 

Sequencing Data) is a powerful framework. ANGSD does 

not call genotypes explicitly. Instead, it calculates genotype 

probabilities and uses these likelihoods to estimate key 

population genetics parameters like allele frequencies, PCA, 

and admixture proportions directly. This approach is 

particularly valuable for non-model species as it is more 

robust to low coverage and avoids the biases introduced by 

hard genotype calling filters (Korneliussen et al., 2014). 

These specialized pipelines share a common feature: they 

prioritize flexibility and robustness to missing data and 

technical artifacts over the maximum possible precision 

achievable in ideal model organism settings. 

Workflow Management Systems 

Beyond pre-packaged pipelines, a modern approach 

involves building custom workflows using workflow 

management systems such as Snakemake and Nextflow. 

These systems allow researchers to encode their entire 

bioinformatic pipeline,from quality control to variant 
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calling,in a single, executable script. They manage the 

execution of each step, automatically handling software 

dependencies (often via containers like Docker or 

Singularity) and ensuring that if a run fails or new data is 

Table 3: Commonly used bioinformatic tools for read alignment, variant calling, and annotation in non-model species, with 

key assumptions and limitations.  

Pipeline stage Tool Primary 

function 

Key 

assumptions 

Major 

limitations 

Typical 

applications in 

non-model / 

agricultural 

genomics 

Quality control FastQC / 

MultiQC 

Assess raw read 

quality and 

sequencing 

artifacts 

Quality metrics 

reflect 

downstream 

performance 

Does not correct 

errors; 

diagnostic only 

Initial 

assessment of 

WGS data from 

crops, livestock, 

pathogens 

Read alignment BWA-MEM Align short 

reads to a 

reference 

genome 

Reference 

genome 

adequately 

represents 

sample 

Sensitive to 

reference bias; 

less effective for 

SVs 

Resequencing of 

crops/livestock 

with available 

references 

Read alignment Bowtie2 Fast short-read 

alignment 

Low divergence 

between reads 

and reference 

Reduced 

accuracy for 

highly divergent 

genomes 

Population-scale 

resequencing 

with moderate 

diversity 

De novo / 

reference-free 

assembly 

SPAdes / Flye Assemble 

genomes from 

short or long 

reads 

Sufficient 

coverage and 

read quality 

High 

computational 

demand; 

fragmented 

assemblies 

Genome 

reconstruction 

for poorly 

characterized 

species 

Variant calling FreeBayes Detect SNPs and 

indels using 

Bayesian 

models 

Reasonable 

coverage and 

ploidy 

specification 

Parameter-

sensitive; 

limited SV 

detection 

Non-model 

species with 

variable ploidy 

Variant calling GATK 

HaplotypeCaller 

Accurate SNP 

and indel calling 

High-quality 

reference and 

calibration data 

Human-centric 

defaults; high 

computational 

cost 

Well-annotated 

agricultural 

species 

Low-coverage 

inference 

ANGSD Estimate 

genotype 

likelihoods and 

population 

statistics 

Population-level 

inference 

preferred over 

genotypes 

No direct 

genotype calls 

Low-coverage 

population 

genomics in 

crops and wild 

relatives 

Annotation SnpEff / VEP Predict 

functional 

effects of 

variants 

Accurate gene 

models available 

Poor 

performance 

with incomplete 

annotations 

Functional 

interpretation in 

crops/livestock 

Functional 

annotation 

InterProScan / 

eggNOG 

Assign protein 

domains and 

functional 

categories 

Homology 

reflects function 

Computationally 

intensive; 

incomplete 

databases 

Trait-associated 

gene discovery 
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added, only the necessary steps are re-run. The benefits of 

reproducibility and scalability are profound. A Snakemake 

or Nextflow script acts as a complete and unambiguous 

record of the entire analysis, detailing every software version, 

parameter, and command used. This makes the analysis 

perfectly reproducible, a critical but often elusive standard 

in scientific computing. Furthermore, these workflows are 

designed for scalability. They can seamlessly execute on a 

single laptop, a high-performance computing cluster, or in 

the cloud, automatically managing job scheduling and 

parallelization without the researcher having to rewrite the 

pipeline for each environment (Mölder et al., 2021). This is 

invaluable for WGS projects involving dozens or hundreds 

of samples, where computational management becomes a 

major task. Platforms like Galaxy offer a complementary 

approach, providing a user-friendly, web-based interface for 

hundreds of bioinformatic tools. Galaxy is excellent for 

beginners or for prototyping analyses, as it removes the 

command-line barrier and tracks the history of all operations. 

However, for large-scale WGS projects, the scalability and 

granular control offered by Snakemake and Nextflow often 

make them the preferred choice for production-level 

analyses. 

BEST PRACTICES AND OPTIMIZATION 

Outstanding Challenges and Research Gaps 

Despite substantial methodological advances, several 

research gaps remain unresolved in non-model genomics. 

These include the absence of standardized benchmarking 

datasets, limited empirical validation of variant calling 

accuracy across diverse taxa, and insufficient integration of 

genomic pipelines with phenotypic and agronomic data. 

Addressing these gaps is essential for improving 

reproducibility and practical utility. The construction and 

execution of a bioinformatic pipeline for non-model species 

is not a one-size-fits-all endeavor. It is an iterative process 

of design, optimization, and validation that must be tailored 

to the specific biological context and computational 

constraints of the study. Moving beyond the mere selection 

of tools, this phase involves strategic decisions about the 

pipeline's architecture, its computational footprint, and its 

capacity to generate biologically holistic insights. Adhering 

to best practices in pipeline design, computational efficiency, 

and data integration is paramount for ensuring that the 

analysis is robust, scalable, and ultimately capable of 

answering the complex questions posed by non-model 

organism genomics. The conceptual progression from 

current limitations to unresolved research gaps and future 

research directions in non-model genomics is illustrated in 

Figure 3. Commonly used bioinformatic tools across 

different stages of whole genome sequencing pipelines, 

along with their underlying assumptions and limitations, are 

summarized in Table 3. 

 

 

Figure 3: Conceptual framework summarizing current 

limitations, methodological gaps, and future research 

directions in whole genome sequencing bioinformatics for 

non-model species. 
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Pipeline Design Considerations 

The foundational principle of effective pipeline design 

is modularity and flexibility. A modular pipeline is 

constructed as a series of independent, interchangeable 

components (e.g., quality control, alignment, variant calling) 

rather than a single, monolithic script. This architecture, 

often facilitated by workflow managers like Snakemake or 

Nextflow, allows researchers to easily swap tools or update 

specific steps without overhauling the entire workflow. For 

instance, one might test both BWA-MEM and Bowtie2 as 

aligners or compare GATK with FreeBayes for variant 

calling on a subset of data to determine the best performer 

for their specific genome (Mölder et al., 2021). This 

flexibility is essential for diverse datasets, as the optimal tool 

for a highly heterozygous invertebrate genome may differ 

from that for a inbred vertebrate population. Closely tied to 

modularity is the critical need for parameter optimization. 

Off-the-shelf software defaults are invariably tuned for 

human data and perform poorly on divergent non-model 

genomes. A systematic approach to optimization is required. 

This begins with generating a small, "truth set" for validation, 

which could involve Sanger sequencing of a few genomic 

regions, using simulated reads with known variants, or even 

leveraging high-quality data from a subset of samples. By 

running the pipeline with different parameters (e.g., mapping 

stringency, variant quality thresholds) and comparing the 

output to the truth set, researchers can empirically determine 

the settings that maximize the F1 score,the harmonic mean 

of precision (minimizing false positives) and recall 

(minimizing false negatives) (O'Neill et al., 2022). This 

process, while computationally demanding initially, is a 

non-negotiable best practice for ensuring data quality and is 

far superior to adopting default parameters or those from 

unrelated studies. 

Computational Efficiency 

The scale of WGS data makes computational efficiency a 

primary concern, especially for research groups without 

access to massive computing infrastructures. Fortunately, 

numerous strategies for reducing runtime and memory 

usage can be employed. A fundamental first step is pre-

processing: rigorous quality trimming and filtering can 

drastically reduce the volume of data entering the alignment 

stage, saving substantial time and storage. Choosing the right 

file formats is also crucial; converting SAM files to 

compressed BAM/CRAM formats reduces storage needs, 

and indexing these files enables rapid access. The most 

powerful strategy is parallelization. Most pipeline steps are 

"embarrassingly parallel," meaning individual samples or 

chromosomes can be processed simultaneously without 

interdependency. Workflow managers like Snakemake and 

Nextflow excel at automatically managing this 

parallelization, splitting jobs across multiple CPU cores on a 

cluster. For particularly demanding steps like sequence 

alignment or variant calling, selecting tools that are 

themselves multi-threaded (e.g., using the -t flag in BWA) 

can yield significant speed improvements. When local 

computational resources are saturated, cloud computing 

solutions (e.g., Amazon Web Services, Google Cloud 

Platform, Microsoft Azure) offer a powerful alternative. The 

cloud provides virtually unlimited, on-demand computing 

power, allowing researchers to scale their analysis to 

hundreds of samples by simply launching more instances. 

The key to cost-effective cloud usage is to choose instance 

types that match the task (e.g., high-memory instances for 

assembly, compute-optimized instances for alignment) and 

to use spot instances for fault-tolerant jobs to reduce costs by 

up to 90%. While cloud computing introduces complexities 

in data transfer and cost management, its flexibility is 

unmatched and is democratizing access to high-performance 

computing for non-model species research (Reid & Lapp, 

2020). 

Data Integration 

The true power of modern genomics is realized not in 

isolation, but through integrative analysis. Combining WGS 

data with other omics data types provides a systems-level 

view of biological function that any single approach cannot 

achieve. For example, overlaying genome-wide SNPs 

with transcriptomics (RNA-seq) data from the same 

individuals can identify expression Quantitative Trait Loci 

(eQTLs), revealing genetic variants that regulate gene 

expression and providing mechanistic insight into putative 

adaptive loci identified in a GWAS. Similarly, integrating 

WGS with epigenomics data (e.g., ATAC-seq or bisulfite 

sequencing for DNA methylation) can uncover the 

regulatory landscape and show how genetic variation 

influences chromatin accessibility and epigenetic marks, 

which in turn affect phenotype (Hoffman & Williams, 2019). 

The challenge lies in the tools for integrative analysis, as 

non-model species lack the curated databases that facilitate 

this in models like human or mouse. The process often 

requires a bespoke bioinformatic approach. Key strategies 

include: 

• Comparative Genomics: Using tools like BLAST, 

OrthoFinder, or Ensembl Compara to find orthologous 

genes and regulatory regions in model species, 

allowing for the transfer of functional annotation. 

• Multi-Omics Alignment: Ensuring all data types (WGS, 

RNA-seq, etc.) are aligned to the same reference 

genome assembly to guarantee coordinate consistency. 
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• Custom Scripting: Writing scripts in R or Python to 

intersect variant calls (VCF files) with gene expression 

tables (from RNA-seq) or chromatin peak calls (from 

ATAC-seq) to find correlations and overlaps. 

While complex, this integrated approach is the future of non-

model species genomics. It moves beyond cataloging genetic 

variation to understanding its functional consequences, 

enabling researchers to connect genotype to phenotype 

through intermediate molecular layers and build a more 

comprehensive model of adaptation, response, and function 

in the organisms they study. 

CHALLENGES AND LIMITATIONS 

Rather than serving as a descriptive inventory of tools, this 

review emphasizes informed methodological decision-

making, recognizing that pipeline performance is inherently 

dependent on species biology, data quality, and clearly 

defined research objectives. Within agricultural genomics, 

best-practice pipeline optimization directly influences the 

detection of quantitative trait loci, genomic estimated 

breeding values, and disease-associated variants. Ethical 

considerations are particularly important for indigenous crop 

varieties, local livestock breeds, and regionally adapted 

germplasm, where genomic data sharing must balance open 

science principles with data sovereignty and community 

rights. Reproducibility should be treated as a baseline 

requirement rather than a best-case outcome, necessitating 

transparent reporting of software versions, parameter 

settings, reference assemblies, and variant filtering criteria. 

Despite the remarkable advances in sequencing technologies 

and bioinformatic tools, the analysis of whole genome 

sequencing (WGS) data for non-model species remains 

fraught with significant challenges that extend beyond mere 

technical execution. These limitations often reside in the 

human, ethical, and logistical dimensions of research, 

presenting barriers that can hinder progress and equitable 

participation in the genomic revolution. Addressing these 

issues is as critical as developing new algorithms, for they 

determine who can generate knowledge and how reliably it 

can be built upon. 

Bioinformatic Expertise 

A primary bottleneck in non-model species genomics is the 

acute need for training in pipeline development and 

interpretation. The field demands a rare hybrid of skills: deep 

biological knowledge of the study system coupled with 

computational proficiency in software engineering, statistics, 

and data management. Few academic programs adequately 

train biologists in these computational skills, creating a 

significant expertise gap. Researchers often find themselves 

spending more time debugging code, managing software 

dependencies, and configuring high-performance computing 

clusters than interpreting biological results (Leprevost et al., 

2017). This steep learning curve can lead to the 

implementation of suboptimal methods or the 

misinterpretation of output data, potentially compromising 

the validity of scientific conclusions. This expertise barrier 

directly impacts the accessibility for researchers in resource-

limited settings. The genomics of global biodiversity is often 

studied in countries with rich biodiversity but limited 

computational infrastructure and funding. These researchers 

face a double burden: the high cost of sequencing and the 

even greater challenge of analyzing the data without access 

to bioinformaticians, high-performance computing, or stable 

internet connections. This creates a concerning disparity 

where the species most in need of genomic research,those in 

threatened ecosystems,are often studied by teams from 

wealthier nations, potentially perpetuating a form of 

"scientific colonialism" where data is extracted without 

building local capacity (Hogg et al., 2022). Bridging this gap 

requires intentional efforts in training, resource sharing, and 

the development of less computationally intensive methods. 

Standardization and Reproducibility 

The field of non-model genomics suffers from a profound 

lack of standardization, leading to high variability in 

pipeline outputs across studies. The same raw dataset 

processed through different pipelines,or even the same 

pipeline with different parameters,can yield vastly different 

variant sets and subsequent biological inferences. For 

instance, the choice of mapping stringency, variant caller, 

and quality filters can alter estimates of population genetic 

parameters like nucleotide diversity (π) and Tajima’s D, 

which are central to testing evolutionary hypotheses (O'Neill 

et al., 2022). This lack of consistency makes it difficult to 

compare results across studies or perform meaningful meta-

analyses, fragmenting the field and slowing cumulative 

progress. Consequently, the importance of standardized 

reporting and documentation cannot be overstated. 

Reproducibility, a cornerstone of the scientific method, is 

exceptionally difficult to achieve in computational biology. 

It requires not just sharing code but comprehensively 

documenting every software version, parameter setting, and 

reference genome used. Best practices now advocate for the 

use of workflow managers (Snakemake, Nextflow) and 

containerization technologies (Docker, Singularity) that 

encapsulate the entire computational environment, ensuring 

that an analysis can be run identically years later (Mölder et 

al., 2021). Furthermore, adhering to reporting standards, 

such as those proposed for bioinformatic workflows, is 

essential for allowing others to understand, evaluate, and 

build upon published work. Key reporting elements required 

to ensure transparency and reproducibility of whole genome 
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sequencing bioinformatic analyses are summarized in Table 

4. 

Ethical and Data Sharing Issues 

The generation of genomic data from non-model species, 

particularly those that are endangered or culturally 

significant, introduces complex ethical considerations. 

Publishing the full genome of an endangered species could 

theoretically provide a blueprint for its exploitation (e.g., by 

revealing genes for valuable traits) or could facilitate 

biopiracy. There is an ongoing debate within the 

conservation genomics community about how to balance the 

imperative of open science with the need to protect 

vulnerable species. Practices such as depositing data in 

managed-access repositories (e.g., NCBI's dbGaP) or 

releasing only a masked version of the genome are emerging 

as potential solutions, though they challenge the norm of full 

data openness (Formenti et al., 2022). Despite these 

concerns, promoting open-access tools and 

repositories remains a fundamental principle for advancing 

the field. The development of bioinformatic software as 

open-source projects allows for community scrutiny, 

improvement, and adaptation. Similarly, archiving data in 

public repositories like the NCBI Sequence Read Archive 

(SRA) and GenBank is crucial for preventing data loss, 

enabling reproducibility, and allowing the global research 

community to extract maximum value from expensive 

sequencing projects. The challenge is to develop nuanced 

data-sharing policies that respect sovereignty and 

conservation concerns while upholding the ethos of 

collaborative, open science. 

FUTURE DIRECTIONS 

Future research priorities include the development of 

standardized benchmarking datasets, broader representation 

Table 4: Reporting and reproducibility checklist for whole genome sequencing bioinformatic pipelines applied to non-model 

and agricultural species 

Category Item to report Why it matters Recommended reporting 

practice 

Sequencing data Platform, read length, 

coverage, library 

preparation 

Affects error profiles, 

variant detection, and 

reproducibility 

Report in Methods with 

accession numbers where 

applicable 

Reference genome Assembly version, source, 

annotation status 

Influences alignment 

accuracy and reference 

bias 

Specify reference build 

and justification for 

selection 

Quality control Filtering thresholds and 

QC tools used 

Ensures transparency in 

data exclusion and 

preprocessing 

Provide exact parameters 

and summary statistics 

Alignment / assembly Software, version, and 

parameters 

Strongly impacts 

downstream variant 

calling 

List tools, versions, and 

non-default parameters 

Variant calling Caller, model 

assumptions, ploidy 

settings 

Determines sensitivity and 

specificity of detected 

variants 

Report caller choice and 

rationale 

Filtering criteria Hard filters or statistical 

thresholds 

Affects false positive and 

false negative rates 

Provide thresholds and 

justification 

Annotation Databases and annotation 

tools used 

Determines functional 

interpretation of variants 

Specify database versions 

and annotation pipelines 

Workflow management Use of Snakemake, 

Nextflow, or equivalent 

Improves reproducibility 

and scalability 

Describe workflow 

framework and execution 

environment 

Computational 

environment 

Hardware, OS, 

containerization 

Ensures analyses can be 

reproduced 

Report HPC/cloud 

resources and container 

images 

Data and code availability Repositories for raw data, 

scripts, workflows 

Supports transparency and 

reuse 

Provide persistent links 

(e.g., ENA, NCBI, 

GitHub) 
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of agriculturally relevant species in genomic databases, and 

the integration of machine learning approaches for 

automated pipeline optimization. The future of 

bioinformatic pipelines for non-model species is bright, 

shaped by rapid technological innovation and a growing 

awareness of the need for collaboration and accessibility. 

Several key trends are poised to address current limitations 

and open new frontiers of discovery. The continued 

maturation of long-read sequencing technologies from 

PacBio and Oxford Nanopore is a game-changer. These 

technologies produce reads that are thousands to millions of 

bases long, effortlessly spanning repetitive regions and 

complex structural variations that confound short-read 

assemblers. The impact on non-model species is profound: 

it is now feasible for individual labs to generate high-quality, 

chromosome-level genome assemblies without the need for 

expensive ancillary techniques like Hi-C, providing a robust 

foundation for all downstream resequencing analyses 

(Hotaling et al., 2021). The integration of these long reads 

into WGS pipelines will improve mapping fidelity and 

variant calling accuracy, particularly for indels and SVs, 

finally allowing researchers to fully characterize the pan-

genome of diverse species populations. Machine learning 

(ML) is set to revolutionize many aspects of the 

bioinformatic pipeline. Supervised learning models can be 

trained to distinguish true genetic variants from sequencing 

artifacts with higher accuracy than traditional statistical 

filters, leading to cleaner variant calls. In genome annotation, 

deep learning models like AlphaFold2 for protein structure 

prediction are being adapted to predict functional elements 

and the regulatory impact of non-coding variants, even in the 

absence of experimental data for that species (Jumper et al., 

2021). Perhaps most intriguingly, ML holds the potential for 

automated pipeline optimization, where algorithms could 

intelligently test thousands of parameter combinations to 

identify the optimal workflow for a given dataset, removing 

a major source of subjectivity and manual effort. Future 

research priorities and emerging methodological trends in 

whole genome sequencing bioinformatics for non-model 

species are summarized in Figure 4. 

Addressing the challenges of non-model species requires a 

collective effort. Community-driven initiatives are 

increasingly powerful. Consortia such as the Vertebrate 

Genomes Project (VGP) and the Earth BioGenome Project 

(EBP) are establishing standardized, high-quality pipelines 

for genome assembly and annotation that will serve as 

benchmarks for the entire field. Open-source platforms like 

GitHub and BioConda are essential for sharing code and 

managing software distributions, respectively. A critical 

future direction is the concerted effort toward expanding 

genomic databases for non-model species, creating 

centralized resources that aggregate genomes, variants, and 

functional annotations, making comparative analyses far 

more efficient and powerful. To democratize access, there is 

a growing push to develop portable and user-friendly tools. 

This includes the development of GUI-based pipelines for 

non-experts, which hide the underlying command-line 

complexity behind intuitive graphical interfaces. Platforms 

Figure 4: Future research priorities and emerging methodological trends in whole genome sequencing bioinformatics for non-

model and agricultural species. 

Figure 5: Translational pathways linking whole genome sequencing bioinformatic pipelines to applied agricultural and 

conservation workflows. 
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like Galaxy already offer this, but future tools will need to 

be even more specialized and well-documented for specific 

non-model applications. Furthermore, cloud-based solutions 

for global access are eliminating the need for expensive local 

hardware. Cloud platforms can offer pre-configured, 

scalable virtual machines with popular pipelines already 

installed, allowing researchers anywhere with an internet 

connection to analyze large genomic datasets by paying only 

for the computing time they use. The translational pathways 

linking whole genome sequencing bioinformatic pipelines to 

applied agricultural and conservation workflows are 

illustrated in Figure 5. 

CONCLUSION 

Whole genome sequencing has transformed the study of 

genetic variation in non-model species, offering 

unprecedented opportunities for advancing evolutionary 

research, conservation efforts, and agricultural improvement. 

However, the effectiveness of WGS in these systems 

depends not only on sequencing technologies but also on the 

careful design and implementation of bioinformatic 

pipelines that account for biological complexity, data 

limitations, and analytical trade-offs. As this review has 

demonstrated, no single pipeline or tool is universally 

optimal for all non-model species, underscoring the 

necessity of context-dependent methodological choices 

informed by species biology, study objectives, and resource 

availability. 

Persistent challenges, including reference bias, high 

heterozygosity, low or uneven sequencing coverage, and 

limited functional annotation, continue to shape the accuracy 

and interpretability of genomic analyses. Addressing these 

issues requires greater emphasis on transparent reporting, 

standardized benchmarking, and reproducible workflow 

design. In agricultural genomics, where WGS data 

increasingly inform crop improvement, livestock breeding, 

and pathogen surveillance, these considerations are 

particularly critical, as analytical biases can directly 

influence breeding decisions and management strategies. 

Looking forward, the integration of long-read sequencing, 

pangenome representations, and scalable workflow 

management systems is expected to reduce reference 

dependence and improve variant detection across diverse 

taxa. Emerging machine learning approaches and 

community-driven benchmarking initiatives further offer 

promising avenues for improving pipeline robustness and 

automation. Ultimately, progress in non-model genomics 

will depend on sustained efforts to align bioinformatic 

innovation with biological realism and applied needs. By 

synthesizing current practices, limitations, and future 

directions, this review provides a framework for advancing 

reliable and impactful whole genome sequencing analyses in 

non-model and agricultural species. 
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