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ABSTRACT: Whole genome sequencing (WGS) has become a central tool in evolutionary biology, conservation genetics, and
agricultural genomics, enabling high-resolution analyses of genetic variation across diverse taxa. However, the application of WGS
to non-model species presents substantial bioinformatic challenges, including incomplete or biased reference genomes, high levels
of genetic diversity, variable sequencing depth, and limited computational resources. These constraints complicate pipeline design,
variant discovery, and biological interpretation, particularly in agriculturally relevant systems where genomic outputs must be
translated into practical outcomes.

This review critically examines current bioinformatic pipelines used for whole genome sequencing analyses in non-model species,
with a focus on methodological trade-offs, sources of bias, and context-dependent optimization strategies. We synthesize recent
advances in read processing, alignment and assembly approaches, variant calling frameworks, and functional annotation tools, and
compare commonly used pipelines with respect to their suitability for non-model and agricultural applications. In addition, we
highlight persistent limitations in benchmarking, reproducibility, and data integration, and discuss emerging trends such as long-
read sequencing, pangenome frameworks, and machine learning-assisted pipeline optimization.

By integrating conceptual frameworks, comparative evaluations, and applied examples from crop, livestock, and pathogen
genomics, this review provides practical guidance for designing robust and reproducible WGS bioinformatic workflows. The
insights presented here aim to support informed methodological decision-making and to facilitate the effective translation of
genomic data into agricultural improvement, conservation management, and biological discovery in non-model systems.

KEYWORDS: Whole genome sequencing; Non-model species; Pipeline optimization; Variant calling tools; Reference genome
bias; Population genomics.

INTRODUCTION

The rapid evolution of high-throughput sequencing (HTS)
technologies has democratized access to whole genome
sequencing, moving it from a monumental undertaking for a
few model organisms to a feasible tool for exploring the
genetic fabric of virtually any species on Earth. This shift
has been particularly transformative for the study of non-
model species,organisms that lack the extensive genomic
resources, such as high-quality reference genomes, detailed
annotations, and established laboratory protocols, that are
available for models like humans, mice, or fruit flies. Whole
genome resequencing (WGR) of populations of non-model
species offers unprecedented power to address fundamental

questions in ecology, evolution, and conservation biology,
from identifying genetic adaptations to climate change and
deciphering demographic history to assessing the genomic
basis of inbreeding and disease susceptibility in endangered
populations (Hohenlohe et al., 2021; Leroy et al., 2021).
However, the immense potential of WGR in non-model
species is coupled with significant bioinformatic challenges.
The analytical journey from raw sequencing reads to
biological insight is fraught with complexities that are often
exacerbated in non-model systems. Unlike work in model
organisms, where standardized, validated pipelines exist,
researchers working on non-model species must navigate a
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labyrinth of decisions and potential pitfalls without a
universal roadmap. The primary hurdle is the frequent
absence of a high-quality, chromosome-level reference
genome for the species of interest. While reference-
free genome assembly is increasingly common, many
studies rely on a draft genome or a reference from a closely
related species. This can introduce substantial biases during
read mapping, including increased rates of mismapping,
lower mapping efficiency, and reference allele bias, where
alleles present in the reference genome are artificially
favored during variant calling (Giinther & Nettelblad, 2019).
These issues can systematically skew downstream
population genetic analyses, such as estimates of nucleotide
diversity, population structure, and selection signatures. The
core of WGR analysis is the bioinformatic pipeline,a multi-
step computational workflow that transforms raw
sequencing data into a set of high-confidence genetic
variants (e.g., single nucleotide polymorphisms - SNPs,
indels). A standard pipeline typically involves quality
control and adapter trimming, read alignment to a reference
genome, processing of alignment files (e.g., duplicate
marking, base quality recalibration), variant calling, and
stringent variant filtering. Each step requires careful
consideration of the software, parameters, and thresholds
used, decisions that are highly sensitive to the specificities
of the non-model study system (Shafer et al., 2017). For
instance, the choice of aligner (e.g., BWA-MEM, Bowtie2)
and its parameters can greatly affect mapping outcomes,
particularly when dealing with divergent genomes. Similarly,
variant callers like GATK’s HaplotypeCaller or Samtools’
mpileup, while powerful, are primarily optimized for human
data and may require extensive parameter tuning and
validation for non-model applications to balance the trade-
off between sensitivity (finding all true variants) and
specificity (avoiding false positives) (Poplin et al., 2018).
Perhaps the most critical and often subjective stage is variant
filtering. This process aims to remove spurious variant calls
arising from sequencing errors, mapping artifacts, or
misalignment. Researchers must filter based on a
combination of quality metrics, such as read depth (DP),
genotype quality (GQ), mapping quality (MQ), and strand
bias. However, establishing appropriate thresholds is non-
trivial. Overly stringent filtering may discard true, often rare
or novel, variants, while overly lenient filtering will inundate
the dataset with false positives that can invalidate subsequent
analyses. In non-model species, the lack of known "true"
variant sets or high-quality validation data makes it
exceptionally difficult to benchmark filtering strategies and
assess the true error rate of the final dataset (O'Neill et al.,
2022). This has led to a concerning lack of standardization
across studies, hindering reproducibility and meta-analyses.
Beyond these core steps, the analysis of WGR data in non-
model species often ventures into more complex territory.
Many research questions require the identification
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of structural variants (SVs),larger genomic alterations like
inversions, duplications, and translocations,which are even
more challenging to accurately detect than SNPs, especially
without a high-quality reference. Furthermore, the field is
increasingly moving towards a population
genomics approach, leveraging the full spectrum of genetic
variation to infer demography, detect selection, and
understand adaptive processes. This requires sophisticated
methods for estimating allele frequency spectra, identifying
runs of homozygosity (ROH) to measure inbreeding, and
performing genome-wide association studies (GWAS) or
genome-scans for selection (e.g., Fst, XP-CLR). Each of
these analyses has its own assumptions and sensitivities to
data quality and missingness, further compounding the
analytical challenge. In applied and agricultural contexts,
whole genome sequencing of non-model species plays an
important role in crop improvement, livestock breeding,
pathogen surveillance, and the conservation of agro-
biodiversity. Many agriculturally important species lack
high-quality reference genomes, making carefully optimized
bioinformatic pipelines essential for translating genomic
data into breeding, management, and disease-resistance
strategies. ~ This review article aims to provide a
comprehensive overview and critical evaluation of
bioinformatic pipelines for whole genome resequencing in
non-model species. We will deconstruct the standard
workflow, from raw data to variant calls, highlighting the
key challenges and decision points at each stage. We will
discuss best practices for quality control, read mapping,
variant calling, and filtering in the context of divergent
genomes and imperfect references. Furthermore, we will
explore advanced applications, including structural variant
detection and population genomic inference, and address the
crucial issues of reproducibility and data management. By
synthesizing insights from previous studies and emerging
methodologies, this review seeks to serve as a practical guide
for researchers navigating the complex yet powerful
landscape of whole genome resequencing in the non-model
world.

CHALLENGES IN WHOLE GENOME
SEQUENCING FOR NON-MODEL SPECIES

To fully appreciate the complexities of bioinformatic
pipeline design, it is first necessary to understand the
fundamental challenges posed by non-model genomic
systems. The application of whole genome sequencing
(WGS) to non-model species has unlocked transformative
potential in fields like evolutionary biology, conservation
genetics, and ecology. However, the path to generating
robust and biologically meaningful genomic insights is
fraught with significant challenges that distinguish it from
work in well-established model organisms. These challenges
do not represent isolated technical issues but interact
synergistically, often amplifying biases if pipeline design
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and parameter selection are not carefully aligned with the
biological characteristics of the study system. For example,
in livestock genomics and crop wild relatives, reference bias
can obscure adaptive loci associated with disease resistance
or environmental tolerance, directly impacting breeding and
selection decisions. These hurdles, which arise from the
inherent biological characteristics of many non-model
species and the resource-limited contexts in which they are
often studied, can introduce substantial biases and errors if
not carefully managed. This review synthesizes the primary
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relies on fragmented, incomplete draft genomes. These
partial references create mapping Dbiases during
resequencing, as reads from unrepresented or misassembled
regions may be discarded or mismapped, leading to a
systematic loss of genetic variation and skewing
downstream analyses (Giinther & Nettelblad, 2019). A
common alternative is the use of a reference genome from a
closely related species. While practical, this approach
introduces the problem of reference bias. During read
alignment, sequences that diverge from the reference are less
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« Reference-free
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Figure 1: Conceptual workflow of whole genome sequencing bioinformatic pipelines for non-model species.

challenges, focusing on the lack of reference genomes, high
genetic diversity, issues of data quality and quantity, and
daunting computational limitations. An overview of a
typical whole genome sequencing bioinformatic workflow
for non-model species is shown in Figure 1.

Lack of Reference Genomes

The cornerstone of most WGS analyses is a high-quality,
chromosome-level reference genome. For mnon-model
species, such a resource is frequently absent, presenting a
fundamental and cascading set of problems. Many studies
resort to reference-free genome assembly, a process that is
itself highly challenging. High heterozygosity, repetitive
elements, and polyploidy,common features in non-model
species,can fragment assemblies and generate chimeric
scaffolds. While long-read sequencing technologies (e.g.,
PacBio, Oxford Nanopore) have dramatically improved
contiguity, achieving chromosome-level resolution often
requires additional costly techniques like Hi-C or optical
mapping, which are not always feasible (Hotaling et al.,
2021). Consequently, many non-model species research

likely to map correctly or at all. This results in an artificial
inflation of genetic similarity to the reference species and a
severe under-calling of variants, particularly in the most
divergent,and often most biologically interesting,genomic
regions (Shafer et al., 2017). This bias directly impacts
population genetic statistics, leading to underestimates of
nucleotide diversity and distorted inferences of demographic
history and selection, as the analysis becomes inherently
biased towards conserved genomic areas.

High Genetic Diversity

Many non-model species, particularly those that are
outcrossing or have large population sizes, exhibit levels of
genetic diversity that far exceed those of classic model
organisms. While a source of valuable information, this high
diversity =~ complicates  bioinformatic ~ procedures.
Elevated heterozygosity poses a  major challenge
for reference-free assembly, often resulting in highly
fragmented assemblies as haplotypes are assembled
separately rather than merged into a single consensus
sequence. For resequencing studies, high heterozygosity
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increases the complexity of variant calling, as algorithms
must distinguish true heterozygous sites from a background
of sequencing errors and paralogous alignments.
Furthermore, structural variations (SVs),including
inversions, duplications, and large insertions/deletions,are
abundant and poorly characterized in non-model species.
Standard short-read aligners struggle to map reads
accurately across breakpoints of SVs, leading to false
positive variant calls and the misinterpretation of
hemizygous regions as homozygous deletions. The detection
of SVs requires specialized tools and often long-read
sequencing data, adding another layer of analytical
complexity and cost (Mahmoud et al., 2019). This high level
of diversity and structural variation makes the alignment
process less efficient and variant calling less accurate,
ultimately obscuring the true patterns of genomic variation.

Data Quality and Quantity

Financial constraints often force researchers working on
non-model species to make pragmatic decisions that impact
data quality. Low-coverage sequencing (e.g., <10x coverage)
is a common strategy to maximize the number of individuals
sequenced within a budget. However, low coverage
drastically increases genotype uncertainty. Distinguishing
true heterozygous sites from sequencing errors becomes
statistically challenging, often necessitating sophisticated
genotype likelihood methods rather than direct genotype
calling (Lou et al., 2021). While these methods enable
valuable analyses like population structure inference, they
are less powerful for detecting rare variants or performing
association mapping, where accurate individual-level
genotypes are critical. Moreover, WGS data is not free from
technical artifacts. Sequencing errors are inherent to all
platforms, and their profile differs between technologies
(e.g., homopolymer errors in Nanopore, GC bias in [llumina).
In non-model species, the absence of known true variants
makes it difficult to calibrate base quality scores and
empirically determine optimal filtering thresholds. PCR
duplicates, caused during library preparation, can inflate
coverage uniformity and must be identified and removed,
but this process can mistakenly flag reads from paralogous
regions as duplicates in the absence of a perfect reference,
leading to the loss of genuine data. Managing these biases
and errors without standardized resources requires careful,
often custom, bioinformatic processing.

Computational Limitations

Perhaps the most pervasive barrier is the
immense computational resource demand of WGS analysis.
The volume of data generated is staggering; a single whole
genome at 30x coverage can produce hundreds of gigabytes
of raw data. Processing this data,through quality control,
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alignment, duplicate marking, and variant calling,requires
substantial CPU power, large amounts of RAM, and vast
storage space. For example, the alignment of hundreds of
samples to a reference genome and subsequent joint variant
calling are highly memory-intensive processes that typically
require high-performance computing (HPC) clusters
(Formenti et al., 2022). The accessibility of HPC
resources is a major hurdle for many research communities
focused on non-model species. While large genomic
consortia have ready access to such infrastructure, individual
research groups, particularly those in smaller institutions or
developing countries, may not. This creates a significant
disparity in the ability to conduct state-of-the-art genomic
research. The computational burden also limits the
exploration of different analytical parameters and the use of
more accurate but computationally expensive software tools,
potentially forcing researchers to adopt suboptimal methods.
Furthermore, the expertise required to manage these
computational workflows and large datasets presents a steep
learning curve, creating a bioinformatic bottleneck that can
slow the pace of discovery and innovation in non-model
species genomics. Major bioinformatic challenges
encountered in non-model species and commonly applied
mitigation strategies are summarized in Figure 2.

Key Challenges Mitigation Strategies

Lack of High-Quality
Reference Genomes
Bias

High Genetic Diversity
and Heterozygosity

Long-read sequencing and
hybrid assembly strategies

Reference-free and
pangenome approaches

Genotype likelihood-based
methods (e.g., ANGSD)

( Joint variant calling and
population-aware filters

Structural variant callers
and graph-based genomes

Low ing Coverage
Structural Variation
and Complex Genomes

C and Workflow managers and
Infrastructure Constraints L cloud/HPC computing

Figure 2: Key bioinformatic challenges and mitigation

strategies in non-model genomics.

COMPONENTS OF BIOINFORMATIC PIPELINES
FOR WHOLE GENOME SEQUENCING

The transformation of raw sequencing reads into
biologically interpretable data requires a multi-stage
bioinformatic pipeline. Each stage presents unique
challenges and requires careful consideration when applied
to non-model species. A robust pipeline is not merely a chain
of tools but an integrated workflow where the output of each
step critically influences the next. This section deconstructs
the standard pipeline, examining the key components,from
initial data preprocessing to final validation,and highlights
the specific considerations and best practices for their
application in non-model genomic studies.
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Data Preprocessing

The initial and crucial step in any WGS analysis is data
preprocessing, which aims to ensure that only high-quality
data proceeds downstream, thereby reducing artifacts and
improving the accuracy of all subsequent analyses. The
process begins with quality control using tools like FastQC,
which provides a visual report on read quality scores,
nucleotide composition, adapter contamination, and the
presence of over-represented sequences. For non-model
species, particular attention must be paid to GC content, as
significant deviations from the expected distribution can
indicate contamination or specific technical biases.
Following quality assessment, adapter trimming and
filtering of low-quality reads and bases are performed using
tools such as Trimmomatic or Cutadapt. This step is vital for
removing sequencing adapters, which, if left in place, can
align to the reference genome and create false positive
variant calls, particularly indels. Furthermore, trimming
low-quality bases from the ends of reads increases the
accuracy of subsequent alignment. The stringency of
filtering must be balanced; overly aggressive trimming can
shorten reads to the point where they become unmappable,
especially to a divergent reference genome. The parameters
for these tools (e.g., sliding window quality thresholds,
minimum read length) often require optimization based on
the initial quality reports and the specific sequencing
technology used (Bolger et al., 2014).

Read Alignment

The core step of mapping preprocessed reads to a reference
genome is profoundly influenced by the nature of the non-
model species' genome. The choice of aligner is critical.
Burrows-Wheeler Aligner (BWA-MEM) and Bowtie2 are
among the most widely used aligners due to their accuracy,
efficiency, and sensitivity. BWA-MEM is generally
preferred for its better performance with longer reads and
indels, which are common when dealing with divergent
genomes (Li, 2013). Handling an incomplete or divergent
reference genome is the primary challenge. When using a
reference from a closely related species, it is often necessary
to adjust alignment parameters to allow for a higher
mismatch rate. However, this increases the risk of reads from
paralogous regions mapping incorrectly. A key strategy is to
perform soft clipping, which allows the ends of reads that do
not map to be excluded from the alignment without
discarding the entire read, preserving information for variant
calling. The resulting Sequence Alignment/Map (SAM) or
its compressed counterpart (BAM) file must then be
processed by marking PCR duplicates and, if possible,
performing local realignment around indels. However, tools
for these steps, like those in the Genome Analysis Toolkit
(GATK) suite, are optimized for human data and may
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require significant parameter tuning for non-model
organisms to avoid removing true biological variation
(Poplin et al., 2018).

Variant Calling

Notably, no single pipeline performs optimally across all
non-model systems, underscoring the necessity of context-
dependent pipeline selection rather than reliance on default
or human-centric workflows. Variant calling identifies
genomic positions that differ from the reference genome,
primarily focusing on single nucleotide polymorphisms
(SNPs) and small insertions/deletions (indels). This step is
highly sensitive to alignment quality and read depth. Two
main classes of variant callers are employed: those that
operate on a single sample (e.g., BCFtools mpileup) and
those designed for population-level variant detection by
jointly calling variants across multiple samples (e.g., GATK
HaplotypeCaller, FreeBayes). Joint calling is generally
preferred as it improves sensitivity for detecting low-
frequency variants by leveraging information across the
entire cohort. The choice of tool involves trade-offs.
GATK's HaplotypeCaller uses a powerful local assembly
step that is excellent for calling indels and variants in
complex regions but is computationally intensive and may
be over-parameterized for non-human data. FreeBayes is a
popular haplotype-based alternative that is often used in non-
model species research due to its simpler model and fewer
assumptions about ploidy and population structure (Garrison
& Marth, 2012). For all callers, the resulting raw variant call
format (VCF) file contains many false positives and must
undergo rigorous filtering based on depth, quality scores,
mapping quality, and strand bias. Establishing these
thresholds without known truth sets is a major challenge and
often relies on heuristic filters and visual inspection of the
data. A comparative overview of commonly used variant
calling pipelines and their suitability for non-model species
is provided in Table 1.

Annotation and Functional Analysis

Determining the functional consequence of identified
variants is a primary goal for many studies but is
exceptionally difficult for non-model species. The challenge
in gene annotation stems from the lack of well-annotated
reference genomes. Without comprehensive databases of
known genes and regulatory elements, predicting whether a
variant is synonymous, non-synonymous, or in a regulatory
region is fraught with uncertainty. Researchers must
therefore rely on a combination of tools. Basic annotation
involves mapping variant positions to any available gene
predictions (GFF/GTF files) for the reference. For functional
inference, tools like BLAST are used to find homologous
sequences in model organism databases (e.g., UniProt,
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RefSeq). InterProScan can then be used to predict protein
domains and functional sites, while databases
like eggNOG provide functional orthology assignments
across a wide range of species (Huerta-Cepas et al., 2019).
This comparative approach is powerful but imperfect; it risks
misannotating genes that are novel to the species or have
diverged in function, and it provides little insight into non-
coding regulatory variants.
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depths, and the transition/transversion (Ti/Tv) ratio for SNP
datasets,a ratio that typically falls within a predictable range
for true variants and deviates for error-prone data. A low
alignment rate or uneven coverage can indicate problems
with the reference genome or library preparation. The most
significant challenge is the validation of variants without a
gold-standard dataset. Where resources allow, a subset of
variants can be validated using an independent technology
like Sanger sequencing. A powerful computational strategy
is to use simulated datasets, where reads are generated in

Table 1: Comparative overview of major variant calling pipelines and their suitability for non-model species.

Pipeline Variant types Key strengths Key limitations Computational Recommended
supported demand use cases in
non-model /
agricultural
species
GATK SNPs, small High accuracy; Optimized for High High-quality
indels extensive human reference
validation; genomics; genomes;
strong sensitive to resequencing in
community reference bias well-annotated
support Crops or
livestock
FreeBayes SNPs, indels Flexible ploidy Parameter- Moderate Non-model
support; suitable  sensitive; species with
for diverse limited variable ploidy
genomes structural and moderate
variant detection coverage
SAMtools / SNPs, indels Fast; Lower Low Exploratory
BCFtools lightweight; sensitivity at analyses;
widely used low coverage; preliminary
limited variant
advanced discovery
filtering
ANGSD Genotype Robust to low Does not output ~ Low—Moderate Population
likelihoods coverage; avoids ~ genotypes genomics; low-
hard genotype directly coverage
calls agricultural
datasets
dDocent SNPs Integrated Complex setup;  Moderate Marine, wild
pipeline; limited relatives, and
optimized for scalability heterogeneous
high agricultural
heterozygosity populations

Quality Control and Validation

Throughout the pipeline, rigorous quality control is
essential. Metrics  for assessing performance include
alignment rates (the proportion of reads that map to the
reference), mean depth of coverage, the distribution of

silico from a known genome sequence containing predefined
variants. By running these simulated reads through the entire
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pipeline, researchers can benchmark its sensitivity and false

discovery rate and optimize parameters
(Escalona et al.,

2016). This

process,

accordingly
though

computationally expensive, is invaluable for developing a
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reliable and validated bioinformatic workflow tailored to the
specific peculiarities of a non-model species study system.

Table 2: Comparative strengths, limitations, and recommended applications of major whole genome sequencing pipelines used

in non-model and agricultural species.

Pipeline / Typical inputs Strengths Limitations Computational Recommended
framework demand applications (non-
model /
agricultural)
GATK Best BAM/CRAM High accuracy; Human-centric High Well-annotated
Practices aligned reads; extensive defaults; crops/livestock;
reference genome; documentation;  requires high- high-coverage
known sites optional ~ broad quality resequencing;
community reference; clinical-like
support reference bias diagnostics
risk
ANGSD Aligned reads Robust to low Requires Low—Moderate =~ Low-coverage
(genotype (BAM); reference coverage; statistical population
likelihood) recommended but avoids hard expertise; genomics; wild
flexible; low genotype calls; limited direct relatives; breeding
coverage good for genotype output populations under
population cost constraints
inference
dDocent Raw reads; reference  Integrated More complex Moderate Highly
optional; designed workflow; configuration; heterozygous
for high optimized for limited species; mixed
heterozygosity diverse/non- scalability for breeding
model genomes  very large populations; non-
datasets model
wildlife/agricultural
systems
Snakemake / Flexible (raw reads Highly Quality depends ~ Moderate-High  Large multi-sample
Nextflow-based to reproducible; on design; (depends on projects;
custom variants/annotations);  scalable; requires pipeline  tools) institutional
workflows modular tool portable across development breeding programs;
selection HPC/cloud; skills standardized
parameter reanalysis pipelines
transparency
Galaxy (web- Raw reads or aligned  Accessible for Limited Low—Moderate ~ Small to medium
based platform) reads; GUI-based non-specialists;  scalability for datasets; capacity

analysis

good for

very large WGS;

building in

teaching and depends on agricultural

smaller projects  server resources genomics labs
Reference-free ~ Short + long reads; Reduces Computationally  High Species lacking
assembly + assembly graphs; reference bias; intensive; references; crop
variant optional reference captures SVs; requires careful wild relatives;
discovery anchoring improves QC and structural variation-
(hybrid) genome validation driven traits

representation
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EXISTING BIOINFORMATIC PIPELINES

Comparative Evaluation of Major Bioinformatic
Pipelines

General-purpose pipelines such as GATK provide high
accuracy and extensive validation but are computationally
intensive and optimized primarily for human genomics. In
contrast, pipelines such as ANGSD and dDocent prioritize
robustness to low sequencing coverage and high
heterozygosity, making them more suitable for non-model
and agricultural species where reference quality and
sequencing depth are often limited. The complexity of
analyzing whole genome sequencing (WGS) data has led to
the development of standardized bioinformatic pipelines.
These frameworks aim to streamline the analytical process,
reduce human error, and enhance reproducibility. For
researchers working with non-model species, the choice of
pipeline is critical and must be guided by an understanding
of their underlying assumptions, strengths, and limitations.
Existing solutions range from highly polished, general-
purpose frameworks designed for human genetics to
specialized tools built specifically to handle the challenges
of diverse, poorly referenced genomes. Furthermore, the rise
of workflow management systems has empowered
researchers to construct robust, scalable, and reproducible
analytical pathways, even for the most complex non-model
projects. A comparative summary of major WGS pipeline
frameworks and their suitability for non-model and
agricultural species is presented in Table 2.

General-Purpose Pipelines

The gold standard in human genomics is the GATK Best
Practices pipeline, developed by the Broad Institute. This
comprehensive  framework provides a meticulously
validated series of steps for data preprocessing, alignment,
base quality score recalibration (BQSR), and variant calling
using the HaplotypeCaller in a joint-genotyping approach.
Its rigorous methodology minimizes artifacts and produces
exceptionally high-quality variant calls for human data.
Similarly, the suite of tools within SAMtools and BCFtools,
pioneered by Heng Li, offers a more modular but widely
adopted set of utilities for processing alignments (samtools)
and calling variants (bcftools mpileup). However, the
direct applicability of these general-purpose pipelines to
non-model species is limited. The GATK Best Practices
workflow makes several key assumptions that are often
violated in non-model systems. The BQSR step, for instance,
requires a known database of polymorphic sites to
recalibrate base quality scores,a resource that is absent for
non-model organisms. Furthermore, the HaplotypeCaller's
statistical models are finely tuned for human levels of
heterozygosity and specific error profiles. When applied to a
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highly diverse non-model species or a divergent reference
genome, these models can perform suboptimally, leading to
a high false positive rate or an under-calling of true variants
(Poplin et al., 2018). While these tools can often be used as
components within a larger workflow, their "best practices"
require significant modification and parameter tuning to be
effective outside of the human context.

Specialized Pipelines for Non-Model Species

Recognizing the limitations of general-purpose tools, the
community has developed several specialized pipelines
explicitly designed for the challenges of non-model species.
These tools often forego the need for a high-quality
reference genome or are built to handle high levels of
diversity and missing data. A seminal example in the realm
of reduced-representation sequencing (RAD-seq) that has
influenced WGS approaches is Stacks. While designed for
restriction-site-associated DNA sequencing, its philosophy
of reference-free locus discovery and genotyping without
strict dependence on a reference genome has been
foundational. For WGS, pipelines like dDocent have gained
significant traction. dDocent is a flexible, open-source
workflow that guides users from raw WGS reads to validated
SNPs. Its strength lies in its adaptability; it can
perform reference-free reference assembly from the data
itself, align reads to this reference-free assembly or an
existing reference, and call variants using a combination of
FreeBayes and other tools (Puritz et al., 2014). It includes
built-in filters for quality and balance of allele depths, which
are crucial for managing high heterozygosity. For low-
coverage WGS data or projects where genotype likelihoods
are preferable to called genotypes due to
uncertainty, ANGSD (Analysis of Next Generation
Sequencing Data) is a powerful framework. ANGSD does
not call genotypes explicitly. Instead, it calculates genotype
probabilities and uses these likelihoods to estimate key
population genetics parameters like allele frequencies, PCA,
and admixture proportions directly. This approach is
particularly valuable for non-model species as it is more
robust to low coverage and avoids the biases introduced by
hard genotype calling filters (Korneliussen et al., 2014).
These specialized pipelines share a common feature: they
prioritize flexibility and robustness to missing data and
technical artifacts over the maximum possible precision
achievable in ideal model organism settings.

Workflow Management Systems

Beyond pre-packaged pipelines, a modern approach
involves building custom workflows using workflow
management systems such as Snakemake and Nextflow.
These systems allow researchers to encode their entire
bioinformatic pipeline,from quality control to variant
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calling,in a single, executable script. They manage the
execution of each step, automatically handling software

dependencies

(often via containers
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like Docker or

Singularity) and ensuring that if a run fails or new data is

Table 3: Commonly used bioinformatic tools for read alignment, variant calling, and annotation in non-model species, with

key assumptions and limitations.

Pipeline stage Tool Primary Key Major Typical
function assumptions limitations applications in
non-model /
agricultural
genomics
Quality control FastQC/ Assess raw read  Quality metrics Does not correct  Initial
MultiQC quality and reflect CITOrS; assessment of
sequencing downstream diagnostic only WGS data from
artifacts performance crops, livestock,
pathogens
Read alignment BWA-MEM Align short Reference Sensitive to Resequencing of
reads to a genome reference bias; crops/livestock
reference adequately less effective for ~ with available
genome represents SVs references
sample
Read alignment =~ Bowtie2 Fast short-read Low divergence  Reduced Population-scale
alignment between reads accuracy for resequencing
and reference highly divergent = with moderate
genomes diversity
De novo / SPAdes / Flye Assemble Sufficient High Genome
reference-free genomes from coverage and computational reconstruction
assembly short or long read quality demand; for poorly
reads fragmented characterized
assemblies species
Variant calling FreeBayes Detect SNPsand Reasonable Parameter- Non-model
indels using coverage and sensitive; species with
Bayesian ploidy limited SV variable ploidy
models specification detection
Variant calling GATK Accurate SNP High-quality Human-centric Well-annotated
HaplotypeCaller  and indel calling  reference and defaults; high agricultural
calibration data computational species
cost
Low-coverage ANGSD Estimate Population-level ~ No direct Low-coverage
inference genotype inference genotype calls population
likelihoods and preferred over genomics in
population genotypes crops and wild
statistics relatives
Annotation SnpEff/ VEP Predict Accurate gene Poor Functional
functional models available performance interpretation in
effects of with incomplete  crops/livestock
variants annotations
Functional InterProScan / Assign protein Homology Computationally — Trait-associated
annotation eggNOG domains and reflects function  intensive; gene discovery
functional incomplete
categories databases
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added, only the necessary steps are re-run. The benefits of
reproducibility and scalability are profound. A Snakemake
or Nextflow script acts as a complete and unambiguous
record of the entire analysis, detailing every software version,
parameter, and command used. This makes the analysis
perfectly reproducible, a critical but often elusive standard
in scientific computing. Furthermore, these workflows are
designed for scalability. They can seamlessly execute on a
single laptop, a high-performance computing cluster, or in
the cloud, automatically managing job scheduling and
parallelization without the researcher having to rewrite the
pipeline for each environment (Mdlder et al., 2021). This is
invaluable for WGS projects involving dozens or hundreds
of samples, where computational management becomes a
major task. Platforms like Galaxy offer a complementary
approach, providing a user-friendly, web-based interface for
hundreds of bioinformatic tools. Galaxy is excellent for
beginners or for prototyping analyses, as it removes the
command-line barrier and tracks the history of all operations.
However, for large-scale WGS projects, the scalability and
granular control offered by Snakemake and Nextflow often
make them the preferred choice for production-level
analyses.

BEST PRACTICES AND OPTIMIZATION

Outstanding Challenges and Research Gaps

Despite substantial methodological advances, several
research gaps remain unresolved in non-model genomics.
These include the absence of standardized benchmarking
datasets, limited empirical validation of variant calling
accuracy across diverse taxa, and insufficient integration of
genomic pipelines with phenotypic and agronomic data.
Addressing these gaps is essential for improving
reproducibility and practical utility. The construction and
execution of a bioinformatic pipeline for non-model species
is not a one-size-fits-all endeavor. It is an iterative process
of design, optimization, and validation that must be tailored
to the specific biological context and computational
constraints of the study. Moving beyond the mere selection
of tools, this phase involves strategic decisions about the
pipeline's architecture, its computational footprint, and its
capacity to generate biologically holistic insights. Adhering
to best practices in pipeline design, computational efficiency,
and data integration is paramount for ensuring that the
analysis is robust, scalable, and ultimately capable of
answering the complex questions posed by non-model
organism genomics. The conceptual progression from
current limitations to unresolved research gaps and future
research directions in non-model genomics is illustrated in
Figure 3. Commonly used bioinformatic tools across
different stages of whole genome sequencing pipelines,
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along with their underlying assumptions and limitations, are
summarized in Table 3.

Current Limitations

" ™
Reference bias and incomplete reference
genomes
\. vy
g N
Low reproducibility and inconsistent
reporting
. S
4 ™
Limited functional annotation in non-model
species

!

Research Gaps

Lack of standardized benchmarking datasets

Limited cross-taxa validation of variant
calling accuracy

Weak integration of genomic and agronomic
data

!

Future Directions

Long-read and pangenome-based reference
frameworks

Community-standard pipelines and
benchmarking resources

Machine learning-assisted pipeline
optimization
- J

Figure 3: Conceptual framework summarizing current
limitations, methodological gaps, and future research
directions in whole genome sequencing bioinformatics for
non-model species.

https://journalscinex.com/index.php/SJAS/index

N RE0EH



Pipeline Design Considerations

The foundational principle of effective pipeline design
is modularity and flexibility. A modular pipeline is
constructed as a series of independent, interchangeable
components (e.g., quality control, alignment, variant calling)
rather than a single, monolithic script. This architecture,
often facilitated by workflow managers like Snakemake or
Nextflow, allows researchers to easily swap tools or update
specific steps without overhauling the entire workflow. For
instance, one might test both BWA-MEM and Bowtie2 as
aligners or compare GATK with FreeBayes for variant
calling on a subset of data to determine the best performer
for their specific genome (Molder et al., 2021). This
flexibility is essential for diverse datasets, as the optimal tool
for a highly heterozygous invertebrate genome may differ
from that for a inbred vertebrate population. Closely tied to
modularity is the critical need for parameter optimization.
Off-the-shelf software defaults are invariably tuned for
human data and perform poorly on divergent non-model
genomes. A systematic approach to optimization is required.
This begins with generating a small, "truth set" for validation,
which could involve Sanger sequencing of a few genomic
regions, using simulated reads with known variants, or even
leveraging high-quality data from a subset of samples. By
running the pipeline with different parameters (e.g., mapping
stringency, variant quality thresholds) and comparing the
output to the truth set, researchers can empirically determine
the settings that maximize the F1 score,the harmonic mean
of precision (minimizing false positives) and recall
(minimizing false negatives) (O'Neill et al., 2022). This
process, while computationally demanding initially, is a
non-negotiable best practice for ensuring data quality and is
far superior to adopting default parameters or those from
unrelated studies.

Computational Efficiency

The scale of WGS data makes computational efficiency a
primary concern, especially for research groups without
access to massive computing infrastructures. Fortunately,
numerous strategies for reducing runtime and memory
usage can be employed. A fundamental first step is pre-
processing: rigorous quality trimming and filtering can
drastically reduce the volume of data entering the alignment
stage, saving substantial time and storage. Choosing the right
file formats is also crucial; converting SAM files to
compressed BAM/CRAM formats reduces storage needs,
and indexing these files enables rapid access. The most
powerful strategy is parallelization. Most pipeline steps are
"embarrassingly parallel," meaning individual samples or
chromosomes can be processed simultaneously without
interdependency. Workflow managers like Snakemake and
Nextflow excel at automatically managing this
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parallelization, splitting jobs across multiple CPU cores on a
cluster. For particularly demanding steps like sequence
alignment or variant calling, selecting tools that are
themselves multi-threaded (e.g., using the -t flag in BWA)
can yield significant speed improvements. When local
computational resources are saturated, cloud computing
solutions (e.g., Amazon Web Services, Google Cloud
Platform, Microsoft Azure) offer a powerful alternative. The
cloud provides virtually unlimited, on-demand computing
power, allowing researchers to scale their analysis to
hundreds of samples by simply launching more instances.
The key to cost-effective cloud usage is to choose instance
types that match the task (e.g., high-memory instances for
assembly, compute-optimized instances for alignment) and
to use spot instances for fault-tolerant jobs to reduce costs by
up to 90%. While cloud computing introduces complexities
in data transfer and cost management, its flexibility is
unmatched and is democratizing access to high-performance
computing for non-model species research (Reid & Lapp,
2020).

Data Integration

The true power of modern genomics is realized not in
isolation, but through integrative analysis. Combining WGS
data with other omics data types provides a systems-level
view of biological function that any single approach cannot
achieve. For example, overlaying genome-wide SNPs
with transcriptomics (RNA-seq) data from the same
individuals can identify expression Quantitative Trait Loci
(eQTLs), revealing genetic variants that regulate gene
expression and providing mechanistic insight into putative
adaptive loci identified in a GWAS. Similarly, integrating
WGS with epigenomics data (e.g., ATAC-seq or bisulfite
sequencing for DNA methylation) can uncover the
regulatory landscape and show how genetic variation
influences chromatin accessibility and epigenetic marks,
which in turn affect phenotype (Hoffman & Williams, 2019).
The challenge lies in the tools for integrative analysis, as
non-model species lack the curated databases that facilitate
this in models like human or mouse. The process often
requires a bespoke bioinformatic approach. Key strategies
include:

e  Comparative Genomics: Using tools like BLAST,
OrthoFinder, or Ensembl Compara to find orthologous
genes and regulatory regions in model species,
allowing for the transfer of functional annotation.

®  Multi-Omics Alignment: Ensuring all data types (WGS,
RNA-seq, etc.) are aligned to the same reference
genome assembly to guarantee coordinate consistency.
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® Custom Scripting: Writing scripts in R or Python to
intersect variant calls (VCF files) with gene expression
tables (from RNA-seq) or chromatin peak calls (from
ATAC-seq) to find correlations and overlaps.

While complex, this integrated approach is the future of non-
model species genomics. It moves beyond cataloging genetic
variation to understanding its functional consequences,
enabling researchers to connect genotype to phenotype
through intermediate molecular layers and build a more
comprehensive model of adaptation, response, and function
in the organisms they study.

CHALLENGES AND LIMITATIONS

Rather than serving as a descriptive inventory of tools, this
review emphasizes informed methodological decision-
making, recognizing that pipeline performance is inherently
dependent on species biology, data quality, and clearly
defined research objectives. Within agricultural genomics,
best-practice pipeline optimization directly influences the
detection of quantitative trait loci, genomic estimated
breeding values, and disease-associated variants. Ethical
considerations are particularly important for indigenous crop
varieties, local livestock breeds, and regionally adapted
germplasm, where genomic data sharing must balance open
science principles with data sovereignty and community
rights. Reproducibility should be treated as a baseline
requirement rather than a best-case outcome, necessitating
transparent reporting of software versions, parameter
settings, reference assemblies, and variant filtering criteria.

Despite the remarkable advances in sequencing technologies
and bioinformatic tools, the analysis of whole genome
sequencing (WGS) data for non-model species remains
fraught with significant challenges that extend beyond mere
technical execution. These limitations often reside in the
human, ethical, and logistical dimensions of research,
presenting barriers that can hinder progress and equitable
participation in the genomic revolution. Addressing these
issues is as critical as developing new algorithms, for they
determine who can generate knowledge and how reliably it
can be built upon.

Bioinformatic Expertise

A primary bottleneck in non-model species genomics is the
acute need for training in pipeline development and
interpretation. The field demands a rare hybrid of skills: deep
biological knowledge of the study system coupled with
computational proficiency in software engineering, statistics,
and data management. Few academic programs adequately
train biologists in these computational skills, creating a
significant expertise gap. Researchers often find themselves
spending more time debugging code, managing software
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dependencies, and configuring high-performance computing
clusters than interpreting biological results (Leprevost et al.,
2017). This steep learning curve can lead to the
implementation of suboptimal methods or the
misinterpretation of output data, potentially compromising
the validity of scientific conclusions. This expertise barrier
directly impacts the accessibility for researchers in resource-
limited settings. The genomics of global biodiversity is often
studied in countries with rich biodiversity but limited
computational infrastructure and funding. These researchers
face a double burden: the high cost of sequencing and the
even greater challenge of analyzing the data without access
to bioinformaticians, high-performance computing, or stable
internet connections. This creates a concerning disparity
where the species most in need of genomic research,those in
threatened ecosystems,are often studied by teams from
wealthier nations, potentially perpetuating a form of
"scientific colonialism" where data is extracted without
building local capacity (Hogg et al., 2022). Bridging this gap
requires intentional efforts in training, resource sharing, and
the development of less computationally intensive methods.

Standardization and Reproducibility

The field of non-model genomics suffers from a profound
lack of standardization, leading to high variability in
pipeline outputs across studies. The same raw dataset
processed through different pipelines,or even the same
pipeline with different parameters,can yield vastly different
variant sets and subsequent biological inferences. For
instance, the choice of mapping stringency, variant caller,
and quality filters can alter estimates of population genetic
parameters like nucleotide diversity (m) and Tajima’s D,
which are central to testing evolutionary hypotheses (O'Neill
et al., 2022). This lack of consistency makes it difficult to
compare results across studies or perform meaningful meta-
analyses, fragmenting the field and slowing cumulative
progress. Consequently, the importance of standardized
reporting and documentation cannot be overstated.
Reproducibility, a cornerstone of the scientific method, is
exceptionally difficult to achieve in computational biology.
It requires not just sharing code but comprehensively
documenting every software version, parameter setting, and
reference genome used. Best practices now advocate for the
use of workflow managers (Snakemake, Nextflow) and
containerization technologies (Docker, Singularity) that
encapsulate the entire computational environment, ensuring
that an analysis can be run identically years later (Mdlder et
al., 2021). Furthermore, adhering to reporting standards,
such as those proposed for bioinformatic workflows, is
essential for allowing others to understand, evaluate, and
build upon published work. Key reporting elements required
to ensure transparency and reproducibility of whole genome
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sequencing bioinformatic analyses are summarized in Table
4.
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data openness (Formenti et al., 2022). Despite these

concerns, promoting

open-access tools

and

repositories remains a fundamental principle for advancing

Table 4: Reporting and reproducibility checklist for whole genome sequencing bioinformatic pipelines applied to non-model

and agricultural species

Category Item to report

Why it matters

Recommended reporting
practice

Sequencing data Platform, read length,
coverage, library

preparation

Affects error profiles,
variant detection, and
reproducibility

Report in Methods with
accession numbers where
applicable

Reference genome Assembly version, source,

annotation status

Influences alignment
accuracy and reference
bias

Specify reference build
and justification for
selection

Quality control Filtering thresholds and

QC tools used

Ensures transparency in
data exclusion and
preprocessing

Provide exact parameters
and summary statistics

Software, version, and
parameters

Alignment / assembly

Strongly impacts
downstream variant
calling

List tools, versions, and
non-default parameters

Variant calling Caller, model

assumptions, ploidy

Determines sensitivity and
specificity of detected

Report caller choice and
rationale

settings variants
Filtering criteria Hard filters or statistical Affects false positive and Provide thresholds and
thresholds false negative rates justification

Annotation Databases and annotation

tools used

Determines functional
interpretation of variants

Specify database versions
and annotation pipelines

Workflow management Use of Snakemake,

Improves reproducibility

Describe workflow

Nextflow, or equivalent and scalability framework and execution
environment
Computational Hardware, OS, Ensures analyses can be Report HPC/cloud
environment containerization reproduced resources and container

images

Data and code availability ~ Repositories for raw data,

scripts, workflows

Supports transparency and
reuse

Provide persistent links
(e.g., ENA, NCBI,
GitHub)

Ethical and Data Sharing Issues

The generation of genomic data from non-model species,
particularly those that
significant, introduces

are endangered or culturally

complex ethical considerations.
Publishing the full genome of an endangered species could
theoretically provide a blueprint for its exploitation (e.g., by
revealing genes for valuable traits) or could facilitate
biopiracy. There is an ongoing debate within the
conservation genomics community about how to balance the
imperative of open science with the need to protect
vulnerable species. Practices such as depositing data in
managed-access repositories (e.g., NCBI's dbGaP) or
releasing only a masked version of the genome are emerging

as potential solutions, though they challenge the norm of full

the field. The development of bioinformatic software as
open-source projects allows for community scrutiny,
improvement, and adaptation. Similarly, archiving data in
public repositories like the NCBI Sequence Read Archive
(SRA) and GenBank is crucial for preventing data loss,
enabling reproducibility, and allowing the global research
community to extract maximum value from expensive
sequencing projects. The challenge is to develop nuanced
data-sharing policies that respect sovereignty and
conservation concerns while upholding the ethos of
collaborative, open science.

FUTURE DIRECTIONS

Future research priorities include the development of
standardized benchmarking datasets, broader representation
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of agriculturally relevant species in genomic databases, and
the integration of machine learning approaches for
automated pipeline optimization. The future of
bioinformatic pipelines for non-model species is bright,

Short-term Priorities
(1-3 years)

Mid-term Developments
(3-5 years) years)
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prediction are being adapted to predict functional elements
and the regulatory impact of non-coding variants, even in the
absence of experimental data for that species (Jumper et al.,
2021). Perhaps most intriguingly, ML holds the potential for

Long-term Directions (5+

Standardized benchmarking
datasets Improved variant
filtering strategies Expanded

Machine learning-assisted

P':"'ge"‘""“f :“d 9{,39"":’?55‘1_ pipeline optimization Automated,

re zrer’;‘cis n :gdratloln o °n9d adaptive bioinformatic workflows

Ehe [ U e L i ek Real-time genomic analyses in
reference genomes for key taxa structural variant detection applied systems

Figure 4: Future research priorities and emerging methodological trends in whole genome sequencing bioinformatics for non-

model and agricultural species.

shaped by rapid technological innovation and a growing
awareness of the need for collaboration and accessibility.
Several key trends are poised to address current limitations
and open new frontiers of discovery. The continued
maturation of long-read sequencing technologies from
PacBio and Oxford Nanopore is a game-changer. These
technologies produce reads that are thousands to millions of
bases long, effortlessly spanning repetitive regions and
complex structural variations that confound short-read
assemblers. The impact on non-model species is profound:
it is now feasible for individual labs to generate high-quality,
chromosome-level genome assemblies without the need for
expensive ancillary techniques like Hi-C, providing a robust
foundation for all downstream resequencing analyses
(Hotaling et al., 2021). The integration of these long reads
into WGS pipelines will improve mapping fidelity and
variant calling accuracy, particularly for indels and SVs,
finally allowing researchers to fully characterize the pan-
genome of diverse species populations. Machine learning

automated pipeline optimization, where algorithms could
intelligently test thousands of parameter combinations to
identify the optimal workflow for a given dataset, removing
a major source of subjectivity and manual effort. Future
research priorities and emerging methodological trends in
whole genome sequencing bioinformatics for non-model
species are summarized in Figure 4.

Addressing the challenges of non-model species requires a
collective effort. Community-driven
increasingly powerful. Consortia such as the Vertebrate
Genomes Project (VGP) and the Earth BioGenome Project
(EBP) are establishing standardized, high-quality pipelines

initiatives are

for genome assembly and annotation that will serve as
benchmarks for the entire field. Open-source platforms like
GitHub and BioConda are essential for sharing code and
managing software distributions, respectively. A critical
future direction is the concerted effort toward expanding
genomic databases for non-model species, creating
centralized resources that aggregate genomes, variants, and

WGS Data Generation (short- and
long-read sequencing)

Bioinformatic Pipelines (QC =
alignment / assembly = variant
calling = annotation)

Actionable Genomic Insights
(variants, population structure,
functional predictions)

Crop Improvement (marker-

assisted and genomic selection) [esistancelendiprodictivity

traits)

Livestock Breeding (disease

Pathogen Surveillance (outbreak
tracing and diagnostics)

onservation Management (genetic
diversity and local adaptation)

Figure 5: Translational pathways linking whole genome sequencing bioinformatic pipelines to applied agricultural and

conservation workflows.

(ML) is set to revolutionize many aspects of the
bioinformatic pipeline. Supervised learning models can be
trained to distinguish true genetic variants from sequencing
artifacts with higher accuracy than traditional statistical
filters, leading to cleaner variant calls. In genome annotation,
deep learning models like AlphaFold2 for protein structure

functional annotations, making comparative analyses far
more efficient and powerful. To democratize access, there is
a growing push to develop portable and user-friendly tools.
This includes the development of GUI-based pipelines for
non-experts, which hide the underlying command-line
complexity behind intuitive graphical interfaces. Platforms
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like Galaxy already offer this, but future tools will need to
be even more specialized and well-documented for specific
non-model applications. Furthermore, cloud-based solutions
for global access are eliminating the need for expensive local
hardware. Cloud platforms can offer pre-configured,
scalable virtual machines with popular pipelines already
installed, allowing researchers anywhere with an internet
connection to analyze large genomic datasets by paying only
for the computing time they use. The translational pathways
linking whole genome sequencing bioinformatic pipelines to
applied agricultural and conservation workflows are
illustrated in Figure 5.

CONCLUSION

Whole genome sequencing has transformed the study of
genetic  variation in non-model species, offering
unprecedented opportunities for advancing evolutionary

research, conservation efforts, and agricultural improvement.

However, the effectiveness of WGS in these systems
depends not only on sequencing technologies but also on the
careful design and implementation of bioinformatic
pipelines that account for biological complexity, data
limitations, and analytical trade-offs. As this review has
demonstrated, no single pipeline or tool is universally
optimal for all non-model species, underscoring the
necessity of context-dependent methodological choices
informed by species biology, study objectives, and resource
availability.

Persistent challenges, including reference bias, high
heterozygosity, low or uneven sequencing coverage, and
limited functional annotation, continue to shape the accuracy
and interpretability of genomic analyses. Addressing these
issues requires greater emphasis on transparent reporting,
standardized benchmarking, and reproducible workflow
design. In agricultural genomics, where WGS data
increasingly inform crop improvement, livestock breeding,
and pathogen surveillance, these considerations are
particularly critical, as analytical biases can directly
influence breeding decisions and management strategies.

Looking forward, the integration of long-read sequencing,
pangenome representations, and scalable workflow
management systems is expected to reduce reference
dependence and improve variant detection across diverse
taxa. Emerging machine learning approaches and
community-driven benchmarking initiatives further offer
promising avenues for improving pipeline robustness and
automation. Ultimately, progress in non-model genomics
will depend on sustained efforts to align bioinformatic
innovation with biological realism and applied needs. By
synthesizing current practices, limitations, and future
directions, this review provides a framework for advancing
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reliable and impactful whole genome sequencing analyses in
non-model and agricultural species.
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